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Abstract

The effects of strain rate dependency and inelasticity on the transient responses of composite laminated plates are
investigated. A micromechanics model which accounts for the transverse shear stress effect, the effect of strain rate
dependency and the effect of inelasticity is used for analyzing the mechanical responses of the fiber and matrix constit-
uents. The accuracy of the micromechanics model under transverse shear loading is verified by comparing the results
with those obtained using a general purpose finite element code. A higher order laminated plate theory is extended to
capture the inelastic deformations of the composite plate and is implemented using the finite element technique. A com-
plete micro–macro numerical procedure is developed to model the strain rate dependent behavior of inelastic composite
laminates by implementing the micromechanics model into the finite element model. Parametric studies of the transient
responses of composite plates are conduced. The effects of geometry, ply stacking sequence, material models, boundary
conditions and loadings are investigated. The results show that the strain rate dependency and inelasticity influence the
transient responses of composite plates via two significantly different mechanisms.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to their light weight, excellent strength to weight ratio and energy absorption capability, heteroge-
neous materials such as fiber-reinforced and woven composites are increasingly being used in impact related
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applications. Currently, there is an effort to develop polymer matrix composite (PMC) fan-containment sys-
tems to reduce the weight and cost while maintaining the high levels of safety associated with current sys-
tems. The polymer composite in the engine containment system is very susceptible to projectile impact such
as failed blades separating from the rotor during operation. Therefore, efficient design, test and analysis
procedures are urgently needed for modeling the high-speed impact of composite materials. The types of
polymer matrix composites that are used in such an application have a deformation response that is non-
linear and that varies with strain rate. Thus, it is important to develop a framework for simulating and pre-
dicting the deformation and failure behavior of polymer matrix composite structures subjected to impact
loadings. The analysis methodology must be able to account for strain rate effects, material nonlinearities
and transverse shear stresses, which are important in impact problems. The computational efficiency, which
is critical in the micro–macro numerical analysis of such a problem, particularly when used in a design envi-
ronment, must be considered. The objective of this work is to develop an efficient micro–macro numerical
framework addressing the issues discussed above and to investigate their effects on the transient response of
laminated composite plates.

Extensive reviews of various theories proposed for evaluating the characteristics of composite lami-
nates, including the Laplace transform technique (Chow, 1971), the method of characteristics (Wang
et al., 1972), equivalent single-layer laminate theories (Reddy, 1997) and 3-D finite element methods,
can be found in Noor and Burton (1989), Kapania and Raciti (1989), Reddy (1990), Mallikarjuna and
Kant (1993), and Varadan and Bhaskar (1997). Due to their computational efficiency and accuracy,
equivalent single-layer laminate theories have been widely used for the macroscopic characterizations
of composite laminates. As is well known, the classical laminated plate theory (CLPT) (Kant and Khare,
1994), which is an extension of classical plate theory (CPT) (Khdeir and Reddy, 1991; Khdeir et al., 1992),
neglects the effects of transverse shear strains. Due to a high ratio of in-plane Young�s moduli to trans-
verse shear moduli for most composite laminates, the transverse shear deformations for a composite are
more pronounced compared to those of isotropic plates. To address this issue, the first order shear defor-
mation theory (FSDT) (Whitney, 1969), based on the work of Pao (1972) and Flugge (1967), assumes lin-
ear in-plane displacements through the laminate thickness. Using FSDT, the transient responses of
rectangular composite plates have been investigated by Reddy (1982, 1983). Since constant transverse
shear stresses are assumed, shear correction coefficients are needed to rectify the unrealistic variation
of the shear strains and shear stresses through the thickness. In order to overcome these limitations,
several higher order theories (HOTs) (Reddy, 1984; Chattopadhyay and Gu, 1994), assuming cubic
through-the-thickness variations in displacements, have been developed. In HOTs, the conditions of zero
transverse shear stresses on the top and bottom surfaces are imposed, eliminating the need for shear cor-
rection coefficients while maintaining computational efficiency. Kant and Mallikarjuna (1991), Kant et al.
(1988), Kommineni and Kant (1993), Mallikarjuna and Kant (1990), Kant et al. (1990), Kant et al. (1992)
investigated the linear and nonlinear transient responses of composite plates using a C0 HOT finite ele-
ment method. However, the effect of strain rate dependency of the composite material, which is essential
in the impact problem, was not addressed.

The micromechanics approach has been applied to compute the deformation response of composites in
which the material response is nonlinear. In micromechanics models, the overall properties and responses of
the composites are computed based on the properties and responses of the individual constituents. Plasticity
and viscoplasticity based constitutive equations can be used to compute the nonlinear response of the ma-
trix constituent (assuming the fiber is linear elastic, as is usually the case for polymer matrix composites),
and homogenization methods can then be applied to compute the overall (nonlinear) response of the com-
posite. The methodology is based on defining a unit cell in the composite material. The behavior of the unit
cell can be assumed to be equivalent to the response of a specific point in the composite laminate. Several
variations of this approach have been reported. The method of cells (MOC) was developed by Aboudi
(1989) for unidirectional fiber-reinforced composites with elasto-viscoplastic constituents. Pindera and
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Bednarcyk (1999) reformulated the MOC using simplified uniform stress and strain assumptions, resulting
in considerably improved computational efficiency. By applying a similar approach and discretizing the
composite unit cell into three subcells, a two-dimensional elastic–plastic model was developed by Sun
and Chen (1991). This model was then extended to three dimensions by Robertson and Mall (1993). A more
precise elastic micromechanics model was proposed by Whitney (1993) where the unit cell was divided into
an arbitrary number of rectangular, horizontal slices. Mital et al. (1995) used a slicing approach to compute
the effective elastic constants and microstresses (fiber and matrix stresses) in ceramic matrix composites. In
this work, a mechanics of materials approach was used to compute the effective elastic constants and micro-
stresses in each slice of a unit cell. Laminate theory was then applied to obtain the effective elastic constants
for the unit cell as well as the effective stresses in each slice. Goldberg et al. (2003, 2004), Goldberg (2000)
extended this slicing approach to include the material nonlinearity and strain rate dependency in the defor-
mation analysis of carbon fiber-reinforced polymer matrix composites, and this advanced micromechanics
model was implemented into CLPT for the analyses of symmetric thin laminated plates subject to in-plane
loading. Kim et al. (2004) incorporated the effect of transverse shear stresses into this model and imple-
mented it into a refined HOT to investigate the constitutive relationship of the laminated plate when loaded
at various strain rates.

In this paper, the effects of strain rate dependency and inelasticity on the transient responses of compos-
ite laminated plates are investigated using a micro–macro numerical procedure. Firstly, the inelastic con-
stitutive model used to model the nonlinear, strain rate dependent deformations of the polymer matrix
constituent, and the previously developed micromechanics model which considers the effects of transverse
shear stresses, strain rate dependency and material inelasticity are briefly described. The accuracy of the
micromechanics model under transverse shear loading is verified by comparing the results with those ob-
tained using the commercial finite element code ABAQUS/Explicit (Anonymous, 2003). Next, the imple-
mentation of the micromechanics model into a nonlinear HOT based finite element model, in order to
improve the ability of the methodology to analyze polymer matrix composites subjected to impact loadings,
is presented. Finally, parametric studies of the transient responses of composite laminated plates with var-
ious geometries and stacking sequences, using various material models, under various boundary conditions
and subjected to suddenly applied loadings of various magnitudes, are addressed. It is expected that the
results obtained from this procedure can be used to provide optimum design guidelines for composite lam-
inated plates subject to impact loadings.
2. Nonlinear micromechanics model

A brief description of the nonlinear micromechanics model is presented. The model includes strain rate
dependency, inelastic material behavior and the effect of transverse shear stresses. More detailed informa-
tion can be found in Goldberg et al. (2003, 2004), Goldberg (2000), Kim et al. (2004).

2.1. Constitutive equations to analyze nonlinear deformation of polymer matrix constituent

To analyze the nonlinear, strain rate dependent deformation of the polymer matrix constituent, the
Bodner–Partom viscoplastic state variable model (Bodner, 2002), which was originally developed to ana-
lyze the viscoplastic deformation of metals above one-half of the melting temperature, has been modified
(Goldberg et al., 2003). In state variable models, a single unified strain variable is defined to represent all
inelastic strains (Stouffer and Dame, 1996). Furthermore, in the state variable approach there is no defined
yield stress. Inelastic strains are assumed to be present at all values of stress, the inelastic strains are just
assumed to be very small in the ‘‘elastic’’ range of deformation. State variables, which evolve with stress
and inelastic strain, are defined to represent the average effects of the deformation mechanisms.
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In the modified Bodner model, the components of the inelastic strain rate tensor, _eI
ij, are defined as a

function of the deviatoric stress components sij, the second invariant of the deviatoric stress tensor J2

and an isotropic state variable Z, which represents the resistance to molecular flow. The components of
the inelastic strain rate are defined as follows:
_eI
ij ¼ 2D0 exp � 1

2
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where D0 and n are both material constants, with D0 representing the maximum inelastic strain rate and n

controlling the rate dependence of the material. The effective stress, re, is defined as
re ¼
ffiffiffiffiffiffiffi
3J 2

p
þ

ffiffiffi
3
p

arkk; ð2Þ
where a is a state variable controlling the level of the hydrostatic stress effects and rkk is the summation of
the normal stress components which equals three times the mean stress. Note that the inelastic strains need
be added to the elastic strain tensor to obtain the total strains.

The evolution rate of the internal stress state variable Z and the hydrostatic stress effect state variable a
are defined by the following equations:
_Z ¼ qðZ1 � ZÞ _eI
e; ð3Þ

_a ¼ qða1 � aÞ _eI
e; ð4Þ
where q is a material constant representing the ‘‘hardening’’ rate, and Z1 and a1 are material constants rep-
resenting the maximum value of Z and a, respectively. The initial values of Z and a are defined by the mate-
rial constants Z0 and a0. The term _eI

e in Eqs. (3) and (4) represents the effective deviatoric inelastic strain
rate, which is defined as
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where _eI
ij are the components of the inelastic strain rate tensor _eI

m and is the mean inelastic strain rate. In
many state variable constitutive models developed to analyze the behavior of metals (Stouffer and Dame,
1996), the total inelastic strain and strain rate are used in the evolution laws and are assumed to be equal to
their deviatoric values. As discussed by Li and Pan (1990), since hydrostatic stresses contribute to the
inelastic strains in polymers, indicating volumetric effects are present, the mean inelastic strain rate cannot
be assumed to be zero, as is the case in the inelastic analysis of metals. Further information on the
constitutive model, along with the procedures required to obtain the material constants, can be found in
Goldberg et al. (2003).
2.2. Micromechanics model

To compute the effective strain rate dependent, nonlinear, deformation response of polymer matrix
composites based on the responses of the individual constituents, a micromechanical model, which was
originally proposed to analyze the in-plane deformations of fiber-reinforced composite materials, has been
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modified (Kim et al., 2004). The ability to describe the transverse shear behavior, which is important in the
impact problem, has been added to the modified micromechanics model.

In the modified micromechanics model, the composite laminas are assumed to have a periodic, square
fiber packing and a perfect interfacial bond. The unit cell is defined to consist of a single fiber and its sur-
rounding matrix. The unit cell is divided into several rectangular, horizontal slices of equal thickness as
shown in Fig. 1. Due to symmetry, only one-quarter of the unit cell needs to be analyzed. Each slice is then
separated into two subslices, one composed of fiber material and the other composed of matrix material.
The fiber is assumed to be transversely isotropic, linear elastic and rate independent (common assumptions
for carbon fibers) with a circular cross-section. The matrix is assumed to be an isotropic, rate dependent,
inelastic material and can be characterized using the equations described in the previous section. The rela-
tions between the local strains, eF

ij and eM
ij , and the local stresses, rF

ij and rM
ij , in the fiber and matrix, respec-

tively, are described as follows:
eF
ij ¼ SF

ijklr
F
kl; i; j; k; l ¼ 1; . . . ; 3; ð6Þ

eM
ij ¼ SM

ijklr
M
kl þ eIM

ij ; i; j; k; l ¼ 1; . . . ; 3; ð7Þ
where SF
ijkl and SM

ijkl represent the components of the compliance tensors of the fiber and matrix constituents,
respectively. eIM

ij represents the inelastic strains in the matrix constituent.
The assumptions for the in-plane behavior of the unit cell are made on two levels, the slice level and the

unit cell level. At the slice level, along the fiber direction (direction 1), the strains are assumed to be uniform
in each subslice, and the stresses are combined using volume averaging. The in-plane transverse normal
stresses (direction 2) and in-plane shear stresses (direction 12) are assumed to be uniform in each subslice,
and the strains are combined using volume averaging. The out-of-plane normal strains (direction 3) are as-
sumed to be uniform in each subslice, and the volume average of the out-of-plane stresses in each subslice is
assumed to be zero. For example, for a specific slice i, these assumptions on the relationships among the
stresses and strains in the fiber and matrix, riF

ij , riM
ij , eiF

ij and eiM
ij , the equivalent stresses and strains of the

slice, ri
ij, ei

ij, and the fiber volume fraction of the slice, V i
f , can be expressed as follows:
Fig. 1. Schematic showing relationship between unit cell and slices.
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On the unit cell level, the in-plane strains for each slice are assumed to be constant and equal to the equiv-
alent in-plane strains of the unit cell. The equivalent in-plane stresses of the unit cell are computed by using
volume averaging of the in-plane stresses of each slice. That is,
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where rij and eij are the equivalent in-plane stresses and strains in the unit cell, respectively. Nf represents
the number of fiber slices in the quarter of the unit cell which is analyzed, and hi

f represents the ratio of the
thickness of the slice i to the total thickness of the quarter of the unit cell.

Similar two-level assumptions are also proposed for the transverse shear behavior in the unit cell. Along
the directions 13 (subscript 13) and 23 (subscript 23), the stresses are assumed to be uniform in each slice
(and its subslices), and the strains are combined using volume averaging. That is, for the slice i, these
assumptions are expressed as follows:
riF
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23 ¼ ri
23;
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23 ;
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ð10Þ
At the unit cell level, along the direction 13, the strains are assumed to be uniform for all slices, and the
stresses are combined using volume averaging. Along direction 23, the stresses are assumed to be uniform
for all slices, and the strains are combined using volume averaging. These assumptions can be expressed
using the following equations:
r23
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� �
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ð11Þ
Solving a series of equations describing the assumptions (Eqs. (8)–(11)) and the constitutive equations
for the fiber and matrix (Eqs. (6) and (7)), the relationships between the equivalent stresses and the equiv-
alent strains of the unit cell are obtained



2608 L. Zhu et al. / International Journal of Solids and Structures 43 (2006) 2602–2630
r11

r22

r12

r23

r13

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

Q11 Q12 0 0 0

Q22 0 0 0

Q66 0 0

Q23 0

sym. Q55

2
6666664

3
7777775

e11 � eI
11

e22 � eI
22

e12 � eI
12

e23 � eI
23

e13 � eI
13

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; ð12Þ
where eI
ij represents the equivalent inelastic strains in the unit cell. Qij denotes the effective stiffness matrix of

the unit cell. Detailed information on the equivalent constitutive model of the unit cell, along with the pro-
cedures to obtain eI

ij and Qij in Eq. (12) and the validation of the assumptions of the micromechanics model,
can be found in Goldberg et al. (2003) and Kim et al. (2004).

The advantage of this type of modeling approach over other micromechanics methods is in reducing the
complexity of the analysis and increasing the computational efficiency significantly. The in-plane behavior
of each slice is decoupled, so the in-plane response of each slice can be determined independently, resulting
in a series of small matrix equations instead of one large system of coupled equations. The transverse shear
behavior of the unit cell can be expressed explicitly due to the simplicities of the transverse shear constitu-
tive equations.

2.3. Verification of the micromechanics model under transverse shear loadings

Some validations of the micromechanics model have been conducted under in-plane loading conditions
(Goldberg et al., 2003). The results obtained using the present micromechanics model showed a good cor-
relation with the experimental results. However, no experimental results are currently available for the val-
idation of the micromechanics model under transverse shear loadings. The commercial finite element
software ABAQUS/Explicit (Anonymous, 2003) and alternative theoretical results were used to verify
the transverse shear moduli obtained using the micromechanics model (Kim et al., 2004). In the present
paper, the accuracy of the micromechanics model is further established by comparing the stress–strain
curves along the 23 direction, computed using the current micromechanics model at various strain rates,
with results obtained using ABAQUS (Anonymous, 2003). Previous results (Kim et al., 2004) have shown
Fig. 2. Analysis model used.
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that when loading is applied on an assemblage of 3 · 3 or more unit cells, the central unit cell undergoes a
realistic deformation and the results converge. Therefore, an assemblage of 3 · 3 unit cells is used in the
finite element model in ABAQUS(Anonymous, 2003). A velocity V0, which is calculated from a specified
strain rate, is applied to each side of the analytical model as shown in Fig. 2 (which is a very thin plate with
the front and back surfaces being fixed along the out of plane direction). The equivalent stresses and strains
at the central unit cell are calculated as follows:
r23 ¼
X

i

r23iV i

X
i

V i

,
;

c23 ¼
X

i

c23iV i

X
i

V i

,
;

ð13Þ
where the summation is over the elements i. The quantities Vi, r23i and c23i represent the volume of the ele-
ment, the transverse shear stress and the transverse shear strain in element i, respectively. Details on the
specific verification studies that were conducted can be found later in this article.
3. Finite element formulations

A micro–macro numerical procedure is developed based on the micromechanics model and HOT.
Firstly, the HOT is extended to consider the inelastic deformations. The equivalent inelastic constitutive
relationship for the composite laminated plate is obtained. Next, a nonlinear finite element model based
on the extended HOT is developed. The nonlinear micromechanics model is then implemented into the non-
linear finite element procedure.

3.1. Refined higher order laminated plate theory

In HOT, cubic through-the-thickness variations are assumed to describe the in-plane deformations, and
the out of plane deformation is assumed to be independent of the laminate thickness. The displacement field
is expressed as follows:
uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zwx1ðx; y; tÞ þ z2wx2ðx; y; tÞ þ z3wx3ðx; y; tÞ;
vðx; y; z; tÞ ¼ v0ðx; y; tÞ þ zwy1ðx; y; tÞ þ z2wy2ðx; y; tÞ þ z3wy3ðx; y; tÞ;
wðx; y; z; tÞ ¼ w0ðx; y; tÞ;

ð14Þ
where t is time. u, v and w are the displacements of the point (x,y,z) in the plate, and u0, v0 and w0 are the
corresponding values in the mid-plane. The z-coordinate is normal to the plane of the plate and measured
from the mid-plane along the thickness. The quantities wx1, wx2, wx3, wy1, wy2, and wy3 are the correspond-
ing higher-order terms in the Taylor�s series expansion. Application of the stress-free boundary conditions,
r13jz=±h/2 = r23jz=±h/2 = 0 (where h is the total thickness of the plate), at the top and bottom surfaces, re-
sults in the simplified expression for the displacement field described in Eq. (14)
u ¼ u0 þ z wx �
ow
ox

� �
� 4z3

3h2
wx;

v ¼ v0 þ z wy �
ow
oy

� �
� 4z3

3h2
wy ;

w ¼ w0;

ð15Þ
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where the values of wx and wy can be thought of as quantification of the magnitudes of transverse shear
stresses present in the laminate, and zero values of the two quantities reduce the above formulation of
HOT into the CLPT. The definitions of wx and wy can be expressed as follows:
wx ¼ wx1 þ
ow
ox
;

wy ¼ wy1 þ
ow
oy

.
ð16Þ
The strains in the composite plate are then determined by differentiating the displacements described in
Eq. (15), resulting in the following expressions:
e1 ¼ eð0Þ1 þ zeð1Þ1 þ z3eð3Þ1 ;

e2 ¼ eð0Þ2 þ zeð1Þ2 þ z3eð3Þ2 ;

e6 ¼ eð0Þ6 þ zeð1Þ6 þ z3eð3Þ6 ;

e4 ¼ eð0Þ4 þ z2eð2Þ4 ;

e5 ¼ eð0Þ5 þ z2eð2Þ5 ;

ð17Þ
where the strains are expressed using conventional engineering notations (that is, 1 = 11, 2 = 22, 6 = 12,
4 = 23 and 5 = 13) and
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ð18Þ
For a composite laminated plate composted of several layers, the constitutive equations for each layer
can be written as follows in the structural system
r ¼ Qðe� eIÞ; ð19Þ

where the stress vector r the strain vector e, the inelastic strain vector eI and the stiffness matrix Q are all
defined in the structural coordinate system and are expressed as follows:
r ¼ ½ r1 r2 r6 r4 r5 �T; ð20Þ
e ¼ ½ e1 e2 e6 e4 e5 �T; ð21Þ
eI ¼ ½ eI

1 eI
2 eI

6 eI
4 eI

5 �
T
; ð22Þ

Q ¼ TQTT; ð23Þ
where the superscript T represents the transpose of a vector or matrix. Q is the stiffness matrix of a layer
in the material system as described in Eq. (12) and T represents the corresponding transformation tensor for
the layer. Substituting Eq. (17) into Eq. (19) and integrating through all the layers in the composite plate,
the following nonlinear constitutive equations for the composite laminated plate are obtained:
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8>>><
>>>:

9>>>=
>>>;
¼

A44 A45 D44 D45

A55 D45 D55

F 44 F 45

sym: F 55

2
6664

3
7775

eð0Þ4

eð0Þ5

eð2Þ4

eð2Þ5

8>>>><
>>>>:

9>>>>=
>>>>;
�

QI
4

QI
5

RI
4

RI
5

8>>><
>>>:

9>>>=
>>>;
; ð25Þ
where Ni, Mi, Pi, Qi and Ri are force and moment resultants. N I
i , M I

i , P I
i , QI

i and RI
i are inelastic force and

moment resultants. Aij, Bij, Dij, Eij, Fij and Hij are the plate stiffness matrices. They are defined as
ðNi;Mi; P iÞ ¼
Z h=2

�h=2

rið1; z; z3Þ dz ði ¼ 1; 2; 6Þ;

ðQi;RiÞ ¼
Z h=2

�h=2

rið1; z2Þ dz ði ¼ 4; 5Þ;
ð26Þ

ðN I
i ;M

I
i ; P

I
i Þ ¼

Z h=2

�h=2

Qije
I
jð1; z; z3Þ dz ði; j ¼ 1; 2; 6Þ;

ðQI
i ;R

I
iÞ ¼

Z h=2

�h=2

Qije
I
jð1; z2Þ dz ði; j ¼ 4; 5Þ;

ð27Þ

ðAij;Bij;Dij;Eij; F ij;Hij; Þ ¼
Z h=2

�h=2

Qijð1; z; z2; z3; z4; z6Þ dz ði; j ¼ 1; 2; 6Þ;

ðAij;Dij; F ijÞ ¼
Z h=2

�h=2

Qijð1; z2; z4Þ dz ði; j ¼ 4; 5Þ.
ð28Þ
A more detailed description of Eqs. (24) and (25) is given in Appendix A. It should be noted that the inte-
gration between the lower and upper surfaces, h/2 and �h/2, actually involves a summation of integrations
over each individual layer, since the material properties can be assumed to be different for each layer in the
plate. For symmetric (about the mid-plane) plates, both Bij and Eij are zero.

3.2. Equation of motion

Substituting Eq. (18) into Eq. (17), the matrix form of the strain–displacement relationship can be writ-
ten as
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e ¼ Bu; ð29Þ

where B is the derivative operator matrix and the displacement vector u is defined as
u ¼ ½ u0 wx v0 wy w0 ow=ox ow=oy �T. ð30Þ
The equation of motion can be formulated using Hamilton�s Principle in a manner similar to that pro-
posed by Tiersten (1967). The variational principle between times t0 and t can be written as follows:
dP ¼ 0 ¼
Z t

t0

½dU þ dW � dK� dt; ð31Þ
where the strain energy U, the total virtual work done on the structure W and the kinetic energy K are de-
fined as
dU ¼
Z

S

Z h=2

�h=2

deTr dz dS ¼
Z

S

Z h=2

�h=2

deTðQðe� eIÞÞ dz dS ¼
Z

S

Z h=2

�h=2

deTQe dz dS

�
Z

S

Z h=2

�h=2

deTQeI dz dS; ð32Þ

dW ¼
Z

S

Z h=2

�h=2

duTfB dz dS þ
Z

S
duTfS dS þ duTfP; ð33Þ

dK ¼
Z

S

Z h=2

�h=2

qd _uT _u dz dS; ð34Þ
where S is the area domain of the plate and q represents the mass density. The terms fB, fS and fP represent
body forces, surface tractions and point loads, respectively. Substituting Eqs. (23), (29), (32)–(34) into Eq.
(31), the following equation of motion is obtained:
Z

S

Z h=2

�h=2

½duTq€uþ duTBTTQTTBu� dz dS

¼
Z

S

Z h=2

�h=2

duTfB dz dS þ
Z

S
duTfS dS þ duTfP þ

Z
S

Z h=2

�h=2

duTBTTQTTeI dz dS. ð35Þ
3.3. Finite element discretization

In each finite element, the displacement vector described in Eq. (30) can be interpolated using the nodal
displacement vector, de
ue ¼ Neðx; yÞde; ð36Þ

where ue represents the displacement vector in element e and Ne(x,y) is the interpolation function. The finite
element scheme developed in this work uses linear interpolation of the variables u, v, wx and wy, and a Her-
mite cubic polynomial function for the out of plane displacement, w. This results in seven mechanical de-
grees-of-freedom per node, u, v, wx, wy, w, ow/ox, and ow/oy. Substituting Eq. (36) into Eq. (35) and
considering dd arbitrary yields the following equation:
M€dþ Kd ¼ F1 þ F2; ð37Þ

where d is the global nodal displacement vector. M is the global structural mass matrix and K is the global
stiffness matrix. The quantities F1 and F2 represent the global force vectors due to mechanical loadings and
inelastic deformations, respectively. These terms are defined as follows:
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M ¼
Xn

e¼1

Z
S

Z h=2

�h=2

NT
e qNe dz dS;

K ¼
Xn

e¼1

Z
S

Z h=2

�h=2

NT
e BTTQTTBNe dz dS;

F1 ¼
Xn

e¼1

Z
S

Z h=2

�h=2

NT
e fB dz dS þ

Z
S

NT
e fS dS þNT

e fP

" #
;

F2 ¼
Xn

e¼1

Z
S

Z h=2

�h=2

NT
e BTTQTTeI dz dS;

ð38Þ
where n is the total number of elements used in the composite plate. Four-noded rectangular isoparametric
elements are used in the FEM analysis.

To solve Eq. (37), the Newmark-beta method with Newton–Raphson (NR) iteration (Argyris and
Mlejnek, 1991; Bathe, 1996; Cook et al., 1989) is used in the time domain, which yields the following iterative
form:
KDdk ¼ F1ðt þ DtÞ þ F2ðt þ DtÞ � Rðt þ DtÞk�1 �Mak�1; ð39Þ

where k represents the iteration step. The nodal point force, R(t+Dt)(k�1), which is equivalent to the elastic
elemental stresses at time (t + Dt) in the (k � 1)th iteration, the acceleration, ak � 1, and the effective stiffness
matrix, K, are defined as follows:
Rðt þ DtÞk�1 ¼ Kðt þ DtÞdðt þ DtÞk�1
; ð40Þ

ak�1 ¼ 4

ðDtÞ2
fdðt þ DtÞk�1 � dðtÞg � 4

Dt
vðtÞ � aðtÞ

" #
; ð41Þ

K ¼ 4

ðDtÞ2
Mþ Kðt þ DtÞ; ð42Þ
where the velocity v(t) and acceleration a(t) are obtained using the following expressions:
vðt þ DtÞ ¼ fdðt þ DtÞ � dðtÞg 2

Dt
� vðtÞ; ð43Þ

aðt þ DtÞ ¼ 4

ðDtÞ2
fdðt þ DtÞ � dðtÞg � 4

Dt
vðtÞ � aðtÞ. ð44Þ
Iεtemp

At each Gauss pointM,F1(t+Δt) 
K(t),F2(t),d(t)

N-R iteration
dtemp(t+Δt) 
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F2temp(t+Δt) 

convergent

εtemp(t+Δt) 
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εtemp(t+Δt)  
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d(t+Δt)

Fig. 3. Flowchart of the micro–macro numerical procedure.
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3.4. Micro–macro simulation

The micromechanics model described earlier is implemented into the finite element method (FEM) to
investigate the transient responses of composite laminated plates, including the effects of strain rate depen-
dency and inelasticity. The complete flowchart of the micro–macro numerical procedure is shown in Fig. 3.
Note that the global stiffness matrix, K, will change with the effective strain rate if the material is strain rate
dependent.
4. Results and discussions

4.1. Verification of the micromechanics model

For the verification studies, properties for the representative carbon fiber-reinforced polymer matrix
composite system, IM7/977-2, presented by Goldberg et al. (2003) and Goldberg (2000) are used. The mate-
rial properties are listed in Table 1. The fiber is assumed to be linear elastic and the matrix is modeled using
the strain rate dependent nonlinear model summarized earlier in this paper. The procedures used to deter-
mine the material constants, presented in Table 1, as well as more information about this material, are de-
scribed in detail by Goldberg et al. (2003). For the matrix constituent, the variation in Young�s modulus, E,
as a function of the effective strain rate, _e, is approximated as follows:
Table
Mater

E11 (G

IM7 fi

276

_e (1/s)

977-2

9E�5
1.9
500
Eð_eÞ ¼
6.33 GPa for _e P 500;

3.52þ ð6.33� 3.52Þð_e� 1.9Þ=ð500� 1.9Þ GPa for 1.9 < _e < 500;

3.52 GPa for _e 6 1.9.

8><
>: ð45Þ
Details on the validation of the micromechanics model under in-plane loading conditions can be found
in Goldberg et al. (2003). In conducting the validation of the micromechanics model under transverse shear
loads, a fiber volume fraction of 0.6 is used in the calculation. The adequacy of the mesh size is verified via
comparison of the results obtained by varying the mesh density, and 1684 8-node linear brick elements are
used to mesh the thin plate in the calculation. The variation of r23 with c23, computed using both the cur-
rent micromechanics theory and ABAQUS finite element analyses at various strain rates, is presented in
Fig. 4. It must be noted that ABAQUS results at the lowest strain rate (4.44E � 5/s) are not presented
due to the extremely high computer execution time requirements. Fig. 4 shows excellent correlation between
the results obtained using the current micromechanics model and those obtained using ABAQUS under
both moderate and high strain rate loadings.
1
ial properties of the composite material, IM7/977-2

Pa) E22 (GPa) G12 (GPa) G23(GPa) m12 m23 q (kg/m3)

bers

13.8 20 5.52 0.25 0.25 1800

E (GPa) m D0 (1/s) n Z0 (MPa) Z1 (MPa) q a0 a1 q (kg/m3)

polymer matrix

3.52
3.52 0.4 1.00E+06 0.8515 259.496 1131.371 150.498 0.1289 0.15215 1310
6.33
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4.2. Transient response of the composite laminated plates

Although the developed micro–macro numerical procedure is valid for arbitrary loading conditions, in
this paper, results are presented for composite plates subjected to a suddenly applied uniformly distributed
loading. Square composite plates (length, a = 0.25 m, thickness, h = 0.05 m) with two different sets of mate-
rial properties are considered. The first composite plate is described by using representative orthotropic,
linear elastic material properties with no strain rate dependence of the elastic properties. The purpose of
examining this material is to validate the basic finite element formulation without being concerned about
the additional issues of nonlinearity or strain rate dependence. The next material is a representative poly-
mer matrix composite material with a nonlinear, strain rate dependent, deformation response. By examin-
ing this material, and defining the fiber and matrix properties separately, the full capability of the matrix
constitutive equations, micromechanics techniques and finite element formulation can be examined. Specif-
ically, the material properties of the two composites are as follows:

DATA 1: E1 = 525 GPa, E2 = E3 = 21 GPa, m12 = 0.25, G12 = G13 = G23 = 10.5 GPa, q = 800 kg/m3

where Ei is the Young�s modulus, m12 is the Poisson�s ratio, Gij is the shear modulus and q represents the
mass density of the composite material.

DATA 2: Composite material, IM7/977-2, with fiber volume fraction of 0.6. The material properties are
presented in Table 1. The Young�s modulus of the matrix constituent, E, as a function of the effective strain
rate, _e, is approximated as shown in Eq. (45).

To investigate the importance of using a rate dependent inelastic material model, two more
simplified models for the matrix constituent of the IM7/977-2 composite are considered. These are as
follows:

I. Elastic material with fixed elastic constants, that is, the value of Young�s modulus is obtained from
the static material test (3.52 GPa) and the effect of inelasticity is not considered.

II. Inelastic material with fixed elastic constants, that is, the value of Young�s modulus is obtained from
the static material test (3.52 GPa) and the effect of inelasticity, but not the effect of strain rate on the
elastic properties, is considered.

III. Inelastic material with strain rate dependent elastic constants, that is, the Young�s modulus is changed
with the effective strain rate and the effect of inelasticity is considered.
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The differences in the transient responses using these three models for the matrix constituent are further
investigated under two boundary conditions.

(1) Clamped edge (CC) boundary condition: all four edges clamped, that is
Fig. 5.
9 · 9 m
u0 ¼ v0 ¼ w0 ¼ wx ¼ wy ¼ ow=ox ¼ ow=oy ¼ 0 at all the edges
(2) Clamped-supported edge (CS) boundary condition: two edges clamped and two edges simply sup-
ported, that is
u0 ¼ v0 ¼ w0 ¼ wx ¼ wy ¼ ow=ox ¼ ow=oy ¼ 0 at the edges where x ¼ 0; a;

u0 ¼ v0 ¼ w0 ¼ 0 at the edges where y ¼ 0; a.
The applied step loading on the upper surface of the plate is expressed as follows:
P ðtÞ ¼
q0 for t P 0;

0 for t < 0;

�
ð46Þ
where q0 represents the magnitude of the load and t is time.
4.3. Transient response of the anisotropic composite plate (DATA1) under uniformly distributed loading

The response of a clamped, square, orthotropic elastic composite plate (DATA1), with the stacking se-
quence [0/90/0], subject to a step loading with q0 = 1.0 · 105 N/m2 is investigated in order to study the fun-
damental, transient dynamic finite element formulation. After conducting convergence studies, a mesh size
of 9 · 9 elements and a time step of 5 ls are used in the calculations. The dynamic deflection at the center of
the plate is computed over 250 ls and is compared with the results obtained using FSDT (Reddy, 1983). As
shown in Fig. 5, good correlation is obtained between the HOT results and the FSDT results (thin plate).
The small differences can be attributed to the differences between the two theories.
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4.4. Transient response of the IM7/977-2 composite plates (DATA2) using various material models

After detailed convergence studies, a 7 · 7 element mesh with Dt = 5 ls is used in the following compu-
tations. The transient response is obtained for a clamped composite plate with a nonlinear, strain rate
dependent deformation response (DATA2) with the stacking sequence [0/90/0] subjected to a suddenly ap-
plied step loading with magnitude q0 = 5.0 · 107 N/m2. The center deflection, w(a/2,a/2), the center normal
stresses, r(a/2,a/2,h/2) and the center transverse shear stresses, s(a/2,a/2,0), of the square plate, obtained
using the three material models, are compared in Figs. 6–10, respectively. From Figs. 6–8, it is clear that the
results obtained using models II and III indicate the presence of inelasticity due to the fact that the three
curves do not lie on top of one another. Specifically, the maximum center deflection, wmax, obtained using
model I is less than that obtained using model II. However, the maximum center normal stresses, rxmax and
rymax, obtained using model I are larger than those obtained using model II. This indicates that the model
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including inelasticity is softer than the elastic model, which is consistent with the results obtained by
Kommineni and Kant (1993). It can also be seen, from these figures, that both the maximum center deflec-
tion and the maximum center normal stresses obtained using model II are larger than those obtained using
model III. This can be explained as follows. When the strain rate effect of the elastic properties of the matrix
material is considered, the Young�s modulus of the matrix increases with an increase in the effective strain
rate. This results in a significant increase in the effective transverse shear moduli and a relatively small
change in the effective Young�s moduli of the composite material. Therefore, the effect of the transverse
shear stresses is larger, resulting in a smaller center deflection. As a result, the center normal strain is smal-
ler, which results in lower values of the center normal stresses. Thus, although the magnitudes of the trans-
verse shear stresses (see Figs. 9 and 10) are much smaller, compared to the normal stresses (see Figs. 6–8),
their effects cannot be ignored. The difference between results obtained using models I and III is due to the
combination of the effects of inelasticity and strain rate dependency. As a result, the maximum center
deflection and maximum center normal stresses are overpredicted by model I. Figs. 11 and 12 present
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the stress–strain histories of point (a/2,a/2,h/2) along the x and y directions, respectively. Along the x direc-
tion, the curves obtained using all three models are almost linear. However, significant nonlinearities are
observed in y direction for models II and III. This is due to the fact that for this particular laminated plate,
the fiber orientation in the first layer coincides with the x axis and the matrix plays a more dominant role in
the stress analysis along the y axis. However, an important point to note for this set of results and for the
results discussed in the remainder of this paper is that for the plates with strain rate dependence and inelas-
ticity present, there are currently not any experimental data or alternative theoretical calculations available
with which to compare the results computed using the analysis method described here. Therefore, only
qualitative, not quantitative, conclusions can be reached regarding the performance of the analysis method.

4.5. Transient response of the IM7/977-2 composite plates (DATA2) under various load magnitudes

To investigate the effects of the strain rate dependency of the matrix elastic properties and the matrix
nonlinearity under different load magnitudes, a clamped three-layer composite laminated plate with the
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stacking sequence [0/90/0] is analyzed with q0 varying from 1.0 · 105 N/m2 � 1.0 · 108 N/m2. Figs. 13–15
present variations of the center deflections, w(a/2,a/2) and the center normal stresses, r(a/2,a/2,h/2),
respectively, with time, obtained using model III. As seen from these figures, the variations are not propor-
tional to the magnitude of the load due to the varying effects of the change of elastic properties with strain
rate and the nonlinearity of the matrix material. The variations in the maximum center deflection and max-
imum center normal stresses with respect to the load magnitude are presented in Figs. 16–18 using all three
matrix models (I–III). Nonlinear variations are observed when models II and III are used. Both model I
and model II predict higher maximum center deflections and maximum center normal stresses as compared
to Model III. Also, the differences between the models increase with an increase in the loading magnitude,
which results in deformation occurring at a higher stain rate, which illustrates the significance of simulating
the variation of the elastic properties with strain rate and the nonlinearity of the matrix material.
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4.6. Transient response of the IM7/977-2 composite plates (DATA2) under various boundary conditions

Results are presented for composite plates, with the stacking sequence [0/90/0], subjected to a suddenly
applied step loading of magnitude q0 = 5.0 · 107 N/m2. Two different boundary conditions, clamped edges
(CC) and clamped-supported edges (CS), are used. The transient responses, shown in Fig. 19, are calculated
using matrix model III. The results show that the maximum center deflection and the residual deformation
(represented by the point with the second minimum deflection in the curve) obtained using the CS boundary
condition are larger than those obtained using the CC boundary condition. This implies that inelastic strain
effects are increased for the plate with the CS boundary condition. The maximum center values (center
deflections and center normal stresses) under both the CC and CS boundary conditions, as well the differ-
ences of these values under the CC and CS boundary conditions, are presented in Table 2. The column de-
noted Err represents the boundary influence and is represented using the following expression:
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zErr ¼ ðzCS � zCCÞ=½12ðzCS þ zCCÞ�; ð47Þ
where z represents one of the maximum center values, wmax, rxmax and rymax. The subscripts Err, CS and
CC are the names of the columns where the value of z is obtained. Comparing the zErr�s obtained using the
different matrix models, it can be concluded that the effect of the matrix model on the influence of the
boundary conditions is reasonably small.
4.7. Transient response of the IM7/977-2 composite plates (DATA2) with various stacking sequences

To investigate the influence of the stacking sequence on the maximum center deflection, composite plates
subjected to a suddenly applied step loading with magnitude q0 = 5.0 · 107 N/m2 are investigated. The
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Table 2
Comparisons of maximum center values under different boundary conditions

Model wmax(a/2,a/2), (10�3 m) rxmax(a/2,a/2,h/2) (GPa) rymax(a/2,a/2,h/2) (GPa)

CC CS Err CC CS Err CC CS Err

I 4.6601 5.7482 0.2091 1.0791 1.3334 0.2108 0.1892 0.1908 0.0084
II 4.9749 6.3525 0.2432 0.9772 1.1658 0.1760 0.1734 0.1744 0.0058
III 3.9646 4.8983 0.2107 0.9085 1.1090 0.1987 0.1482 0.1485 0.0020
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stacking sequence of the composite plate is [a/(a + b/a], as shown in Fig. 20. Four cases of ply variation are
used to investigate the effect of anisotropy.
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Case A: Under clamped edges (CC) boundary condition, the range of b is 0–90� and a is 0�.
Case B: Under clamped edges (CC) boundary condition, the range of a is 0–45� and b is 0�.
Case C: Under clamped-supported edges (CS) boundary condition, the range of b is 0–90� and a is 0�.
Case D: Under clamped-supported edges (CS) boundary condition, the range of a is 0–45� and b is 0�.

The variations of the maximum center deflection with stacking sequence for cases A–D are presented in
Figs. 21–24, respectively. It can be observed that the influence of stacking sequence on the maximum center
deflection obtained using the three models of the matrix constituent is similar. Comparing Figs. 21 and 23,
it is clear that, under both CC and CS boundary conditions, the maximum center deflection increases at the
beginning (b < 45�) and then decreases (45� < b < 90�) with an increase in the value of b. However, the re-
sults shown in Figs. 22 and 24 indicate that the maximum center deflection increases (a < 45�) with an in-
crease in the value of a under both CC and CS boundary conditions. This is due to the fact that, in these
cases, the ply with fiber orientation of 45� is most flexible.
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5. Conclusions

A multiscale numerical procedure is developed to accurately model a strain rate dependent, inelastic
composite plate. A micromechanics model, which accounts for the transverse shear stress effect, the effects
of strain rate, and the effects of matrix inelasticity is used for accurate and efficient analysis of the mechan-
ical responses of the fiber and matrix constituents. The accuracy of the micromechanics model under trans-
verse shear loads has been verified. A HOT is extended to accurately capture the inelastic deformations of
the composite plate. The mathematical model is implemented using the finite element technique. The devel-
oped procedure is used to investigate the transient responses of composite plates subjected to suddenly ap-
plied loadings. The results are compared using different models for the matrix constituent of the composite,
under various boundary conditions, subjected to step loadings with various magnitudes, and for composite
plates with various stacking sequences. The following important observations are made from the present
study.

1. Excellent agreement is found between the transverse shear stress–strain curves obtained using the
micromechanics model and those obtained using ABAQUS under both moderate and high strain rate
loadings.

2. Excellent agreement is observed in the variation of center displacement with time between the result
obtained using the present HOT model and that in the literature.

3. The maximum center deflection obtained using an elastic model for the matrix is less than that obtained
using an inelastic model for the matrix. However, the maximum center normal stresses obtained using
the matrix elastic model is larger than those obtained using an inelastic model for the matrix.
Both the maximum center deflection and the maximum center normal stresses obtained using models
where the matrix elastic properties do not vary with strain rate(both elastic and inelastic model) are lar-
ger than those obtained using a model where the matrix elastic properties are allowed to vary with strain
rate.

4. The stress–strain curves show significant nonlinearities in the direction normal to the fiber direction
using both models incorporating inelasticity in the matrix constituent.

5. The differences between the results obtained using different models increase with an increase in the load
magnitude.

6. The influences of boundary condition on the maximum center deflection and normal stresses obtained
using all three matrix models are similar.

7. The influence of ply stacking sequence on the maximum center deflection is similar for both Clamped-
clamped (CC) and Clamped-supported (CS) boundary conditions. The trends are similar for all three
matrix models considered. The maximum center deflection is obtained when a and b are equal to 45�.
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Appendix A

Expressions for force and moment resultants Ni, Mi, Pi (i = 1,2,6) and Qi, Ri (i = 4,5) in Eqs. (24) and
(25) are as follows:
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